RefactorErl + Erlang LS
Feature highlight

The aim of this project to integrate RefactorErl’s diagnostic capabilities into Erlang LS.
Let’s see the currently available features through ELS.

Consider the following source code, and let’s focus on the f/1 function.

You, 14 seconds ago | 1 author (You)

-module{unused).

-export([main/0, f/1]).

~define(USED_MACRO, used_macro).
~define(UNUSED_MACRO, unused_macro).

-define(MOD, module).

Used 0 times | Cannot extract specs (check logs for details)
main() ->

?MOD: foo(),

7USED_MACRO.

Used 0 times | Cannot extract specs (check logs for details)
f(A) —>
os:cmd(A),

Trough this really easy and simple example | will show you some features.

For example here RefactorErl identifies a
Useq: Unsecure 0S call: os:cmd(A) RefactorErl possible vulnerability where an OS call’s
parameter coming from an unknown
source.

f(A) View Problem No quick fixes available

f(A)

Possible atom exhaustion: list_to_atom(A) RefactorErl

Here a possible exhaustion of the atom table is recognised, as variable A is coming from an
unknown place, so ‘A’ is considered as a possible place of vulnerability.

> on the file cannot be interpreted.
f(A)
Unsecure kernel operation: net_adm:host_file(A) RefactorErl

No quick fixes available

net_adm:host_file(A).

—_—

This one is another example of a Network kernel operation. This might be also unsafe, as the
origin of ‘A’ is unknown.

Some other features

You may have noticed that this phase of the project is mainly focused in security issues.

There are some other security-based diagnostics added to ELS, such as:

* unsecure_ interoperability -- Lists interoperability related weaknesses
* unsecure_ concurrency -- Identifies concurrency related issues

e unsecure os_call -- Checks for OS injection

* unsecure port creation -- Identifies port creation related issues

* unsecure file operation -- Lists unsecure file handling

* unstable call -- Shows possible atom exhaustion

* nif calls -- Identifies unsecure NIF calls

* unsecure port drivers -- Lists the unsecure ddll usage

* decommissioned crypto -- Lists the legacy functions from crypto module

* unsecure compile operations -- Shows unsecure compile/code loading
related operations

* unsecure process_linkage -- Lists unsecure process linkage

* unsecure prioritization -- Identifies unsecure process prioritization
* unsecure_ets traversal -- Lists unsecure ETS traversal

e unsafe network -- Checks for unsecure kernel related operation

* unsecure_ xml usage -- Identifies unsecure xml parsing

* unsecure_ communication -- Lists unsecure communication related
settings

(soruce: http://pnyf.inf.elte.hu/trac/refactorerl/wiki/howto#Detectingvulnerabilities)

http://pnyf.inf.elte.hu/trac/refactorerl/wiki/howto#Detectingvulnerabilities

