1 | {-# Language GADTs, FlexibleInstances, FlexibleContexts, MultiParamTypeClasses, FunctionalDependencies, ScopedTypeVariables, TypeFamilies, NoMonomorphismRestriction, OverlappingInstances, IncoherentInstances #-} |
---|
2 | module L where |
---|
3 | |
---|
4 | import qualified Data.SBV as SBV |
---|
5 | import Data.Char(ord, chr) |
---|
6 | import Control.Monad.State |
---|
7 | --import Data.Supply |
---|
8 | |
---|
9 | data OpName = PLUS | MINUS | MUL |
---|
10 | data Bottom = Bottom |
---|
11 | deriving Show |
---|
12 | |
---|
13 | {- Lambda calculus without free variables -} |
---|
14 | type Arr repr a b = repr a -> repr b |
---|
15 | |
---|
16 | class (Num (LInt l)) => Lambda l where |
---|
17 | type LInt l :: * |
---|
18 | labs :: (l a -> l b) -> l (Arr l a b) |
---|
19 | app :: l (Arr l a b) -> l a -> l b |
---|
20 | lit :: (LInt l) -> l (LInt l) |
---|
21 | op :: l (LInt l) -> OpName -> l (LInt l) -> l (LInt l) |
---|
22 | |
---|
23 | class SizeExp l where |
---|
24 | type List l :: * -> * |
---|
25 | list :: l Int -> l (Arr l Int b) -> l (List l b) |
---|
26 | aabs :: (l Int -> l (Arr l Int a) -> l b) -> l (Arr l (List l a) b) |
---|
27 | shift :: l (Arr l Int a) -> l Int -> l (Arr l Int a) -> l (Arr l Int a) |
---|
28 | undef :: l Bottom |
---|
29 | unsized :: l () |
---|
30 | |
---|
31 | instance (Lambda l, LInt l ~ a) => Num (l a) where |
---|
32 | fromInteger = lit . fromIntegral |
---|
33 | lhs + rhs = op lhs PLUS rhs |
---|
34 | lhs - rhs = op lhs MINUS rhs |
---|
35 | lhs * rhs = op lhs MUL rhs |
---|
36 | abs = error "abs is not implemented" |
---|
37 | signum = error "signum is not implemented" |
---|
38 | |
---|
39 | {- Printing -} |
---|
40 | newtype LPrint a = LPrint { unPrint :: Int -> Int -> ShowS } |
---|
41 | |
---|
42 | instance Lambda LPrint where |
---|
43 | type LInt LPrint = Int |
---|
44 | lit x = LPrint $ \_ -> return $ shows x |
---|
45 | op m opc n = LPrint $ \p -> do |
---|
46 | let (prec, lprec, rprec, c) = getPrec opc |
---|
47 | l1 <- (unPrint m lprec) |
---|
48 | l2 <- (unPrint n rprec) |
---|
49 | return $ showParen (p>prec) $ l1 . showChar c . l2 |
---|
50 | app f v = LPrint $ \p -> do |
---|
51 | l1 <- unPrint f 6 |
---|
52 | l2 <- unPrint v 7 |
---|
53 | return $ showParen (p>6) $ l1 . showChar ' ' . l2 |
---|
54 | labs e = LPrint $ \p v -> let |
---|
55 | var = LPrint $ \_ -> return $ showVar v |
---|
56 | l = unPrint (e var) 0 $ succ v |
---|
57 | in showParen (p>0) $ showChar 'λ' . showVar v . showChar '.' . l |
---|
58 | |
---|
59 | instance SizeExp LPrint where |
---|
60 | type List LPrint = [] |
---|
61 | aabs f = LPrint $ \p v -> let |
---|
62 | v2 = succ v |
---|
63 | var1 = LPrint $ \_ _ -> showVar v |
---|
64 | var2 = LPrint $ \_ _ -> showVar v2 |
---|
65 | l = unPrint (f var1 var2) 0 (v+2) |
---|
66 | in showParen (p>0) $ showChar 'Î' . showVar v . showChar ',' . showVar v2 . showChar '.' . l |
---|
67 | list s f = LPrint $ \p -> do |
---|
68 | l1 <- unPrint s 9 |
---|
69 | l2 <- unPrint f 9 |
---|
70 | return $ showParen (p>0) $ showString "List " . l1 . showChar ' ' . l2 |
---|
71 | shift e1 s e2 = LPrint $ \p -> do |
---|
72 | l1 <- unPrint e1 2 |
---|
73 | l2 <- unPrint s 2 |
---|
74 | l3 <- unPrint e2 2 |
---|
75 | return $ showParen (p>0) $ showString "Shift " . l1 . showChar ' ' . l2 . showChar ' ' . l3 |
---|
76 | undef = LPrint $ \_ -> return $ showChar 'âŽ' |
---|
77 | unsized = LPrint $ \_ -> return $ showChar 'U' |
---|
78 | |
---|
79 | view :: LPrint a -> LPrint a |
---|
80 | view = id |
---|
81 | instance Show (LPrint a) where |
---|
82 | showsPrec _ e = unPrint e 0 0 |
---|
83 | |
---|
84 | showVar x = if x>28 |
---|
85 | then showVar (x `div` 29) . showChar (chr $ ord 'a' + (x `mod` 29)) |
---|
86 | else showChar $ chr $ ord 'a' + x |
---|
87 | |
---|
88 | getPrec :: OpName -> (Int,Int,Int,Char) |
---|
89 | getPrec PLUS = (4,4,5,'+') |
---|
90 | getPrec MINUS = (4,4,5,'-') |
---|
91 | getPrec MUL = (5,5,6,'*') |
---|
92 | |
---|
93 | getVar :: State Int Int |
---|
94 | getVar = do { x <- get; put (x+1); return x } |
---|
95 | |
---|
96 | x = aabs (\s _ -> s) `app` list (lit 0) (labs $ \_ -> undef) |
---|
97 | y = list 0 $ labs $ \_ -> undef |
---|
98 | conss = labs $ \x -> aabs $ \ys yf -> list (ys + 1) $ shift yf ys (labs $ \_ -> x) |
---|
99 | concats = aabs $ \xs xf -> (aabs $ \ys yf -> list (xs+ys) $ shift xf xs yf) |
---|
100 | maps = labs $ \x -> aabs $ \ys yf -> list ys ( x `app` yf ) |
---|
101 | l0 = list (lit 0) (labs $ \_ -> unsized) |
---|
102 | l1 = list (lit 1) (labs $ \_ -> unsized) |
---|
103 | l2 = list (lit 2) (labs $ \_ -> unsized) |
---|
104 | l00 = list (lit 0) (labs $ \_ -> list (lit 0) (labs $ \_ -> unsized)) |
---|
105 | l10 = list (lit 1) (labs $ \_ -> list (lit 0) (labs $ \_ -> unsized)) |
---|
106 | l01 = list (lit 0) (labs $ \_ -> list (lit 1) (labs $ \_ -> unsized)) |
---|
107 | l11 = list (lit 1) (labs $ \_ -> list (lit 1) (labs $ \_ -> unsized)) |
---|
108 | l12 = list (lit 1) (labs $ \_ -> list (lit 2) (labs $ \_ -> unsized)) |
---|
109 | |
---|
110 | v = (labs $ \s -> s+1) `app` (lit 1+2) |
---|
111 | w1 = (labs $ \s -> s+ lit 1) |
---|
112 | w2 = (labs $ \s -> s+ lit 2) |
---|
113 | q1 :: (Lambda l, a ~ LInt l, Num (l a)) => l (Arr l b (Arr l a a)) |
---|
114 | q1 = (labs $ \q -> labs $ \s -> s + lit 1) |
---|
115 | q2 :: (Lambda l, a ~ LInt l, Num (l a)) => l (Arr l a (Arr l a a)) |
---|
116 | q2 = (labs $ \q -> labs $ \s -> s + q) |
---|
117 | q3 = (labs $ \q -> labs $ \s -> q + s) |
---|
118 | |
---|
119 | {- Evaluating -} |
---|
120 | eval = unR |
---|
121 | newtype R a = R { unR :: a } |
---|
122 | instance Lambda R where |
---|
123 | type LInt R = Int |
---|
124 | labs f = R $ f |
---|
125 | app e1 e2 = (unR e1) e2 |
---|
126 | lit i = R i |
---|
127 | op e1 op e2 = let opm = case op of |
---|
128 | PLUS -> (+) |
---|
129 | MINUS -> (-) |
---|
130 | MUL -> (*) |
---|
131 | in R $ opm (unR e1) (unR e2) |
---|
132 | |
---|
133 | newtype RList a = RList { unList :: (Int, Int -> a) } |
---|
134 | instance (Show a) => Show (RList a) where |
---|
135 | show (RList (s,f)) = show (map f [0..s-1]) |
---|
136 | |
---|
137 | instance SizeExp R where |
---|
138 | type List R = RList |
---|
139 | undef = R $ Bottom |
---|
140 | unsized = R $ () |
---|
141 | list s f = R $ RList (unR s, unR . (unR f) . R ) |
---|
142 | aabs e = R $ ( \(RList (s,f)) -> (e (R s) (R (R . f . unR))) ) . unR |
---|
143 | shift a s c = R $ \i -> if (unR i)<(unR s) then unR a i else unR c i |
---|
144 | |
---|
145 | newtype E a = E { unE :: a } |
---|
146 | instance Lambda E where |
---|
147 | type LInt E = SBV.SInteger |
---|
148 | labs f = E $ f |
---|
149 | app e1 e2 = (unE e1) e2 |
---|
150 | lit = E |
---|
151 | op e1 op e2 = let opm = case op of |
---|
152 | PLUS -> (+) |
---|
153 | MINUS -> (-) |
---|
154 | MUL -> (*) |
---|
155 | in E $ opm (unE e1) (unE e2) |
---|
156 | |
---|
157 | class Sizeable' a where |
---|
158 | getl' :: E (Arr E a b) -> SBV.Symbolic b |
---|
159 | |
---|
160 | instance Sizeable' (SBV.SInteger) where |
---|
161 | getl' f = do |
---|
162 | x <- SBV.sInteger "x" |
---|
163 | return $ unE $ (unE f) $ E x |
---|
164 | |
---|
165 | {- |
---|
166 | getEq f = SBV.proveWith (SBV.z3 {SBV.verbose=True}) $ do |
---|
167 | x <- getl f |
---|
168 | return $ x SBV..== x |
---|
169 | -} |
---|
170 | data ST = ST |
---|
171 | |
---|
172 | class Instantiateable a r | a -> r where |
---|
173 | instantiate :: a -> SBV.Symbolic r |
---|
174 | |
---|
175 | instance Instantiateable SBV.SInteger SBV.SInteger where |
---|
176 | instantiate _ = do |
---|
177 | liftIO $ putStrLn " INT VARIABLE x" |
---|
178 | SBV.sInteger "x" |
---|
179 | |
---|
180 | instance Instantiateable a ST where |
---|
181 | instantiate _ = do |
---|
182 | liftIO $ putStrLn " ? VARIABLE x" |
---|
183 | return $ undefined -- SBV.uninterpret "f" |
---|
184 | |
---|
185 | class Sizeable a where |
---|
186 | type Ret a :: * |
---|
187 | getl :: a -> a -> SBV.Symbolic (Ret a, Ret a) |
---|
188 | |
---|
189 | instance (Instantiateable a r, Sizeable b) => Sizeable (Arr E a b) where |
---|
190 | type Ret (Arr E a b) = Ret b |
---|
191 | getl f g = do |
---|
192 | liftIO $ putStrLn " -> x" |
---|
193 | x <- instantiate (undefined :: a) |
---|
194 | let f' = unE $ f $ E x |
---|
195 | let g' = unE $ g $ E x |
---|
196 | getl f' g' |
---|
197 | |
---|
198 | instance Sizeable (SBV.SInteger) where |
---|
199 | type Ret SBV.SInteger = SBV.SInteger |
---|
200 | getl f g = return (f,g) |
---|
201 | |
---|
202 | getEq f g = SBV.proveWith (SBV.z3 {SBV.verbose=True}) $ do |
---|
203 | (x,y) <- getl (unE f) (unE g) |
---|
204 | return $ x SBV..== y |
---|